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The solution of the linear, inverse, transient heat conduction problem (IHCP) in a cylindrical geometry is
analysed. The rotating cylinder under investigation is experiencing boiling convection induced by the
impingement of a water jet. The initial temperature is known, additional temperature measurements
in time are taken with sensors positioned at a constant radius within the solid material, and the estima-
tion of the wall heat flux at the external radius is sought. First, simulated temperature measurements
inside the cylinder are processed in order to be used to estimate the wall heat flux. When noise is present
in the data, some of the simulated results obtained using the least squares method exhibit oscillatory
behavior, but these large oscillations are substantially reduced by the implementation of a regularization
technique. Real experimental data are also used for the wall condition estimation and for the subsequent
building of local boiling curves are plotted and discussed. The question of the possible effect of a temper-
ature dependent conductivity on the reconstructed wall condition is also considered.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction inder starting from temperature measurements inside the cylinder.
Inverse problems are encountered in many heat transfer situa-
tions when severe working conditions make measurement of ther-
mal properties or of unknown boundary conditions difficult.
Inverse heat conduction techniques [1] can be implemented for
estimating the heat flux values on the external surface of a con-
ducting solid through the use of experimental temperature mea-
surements taken within or at another surface of the body.

With the improvement of computer capability, inverse tech-
niques have become a popular means of resolving heat transfer
problems in the last decade. Important applications for inverse
heat conduction problem solutions include for example controlled
cooling of electronic components [2], estimation of jet-flow rate of
cooling in machining [3,4] or quenching [5], and determination of
conditions at the interface between the mold and metal during me-
tal casting [6] or rolling process [7].

In boiling heat transfer research [8,9], inverse techniques are
also very useful. In this type of situation, the temperature sensors
cannot be placed directly on the surface due to the fact that the
surface morphology has a direct influence on the phenomenon of
interest. A method for measurement of local heat fluxes at the sur-
face of a rotating cylinder which is experiencing boiling convection
induced by the impact of a subcooled water jet on its surface has
been recently proposed by Volle et al. [10]. It involves estimating
the Neumann boundary condition on the outer surface of the cyl-
ll rights reserved.

: +33 38 359 5544.
.fr (M. Gradeck).
This two-dimensional inverse conduction method is based on an
analytical solution of the energy equation and has been success-
fully tested on simulated temperature measurements. It can be
used to study the influence on heat transfer of parameters such
as water jet subcooling, nozzle-surface distance and surface
velocity.

The purpose of this paper is not describing the boiling phenom-
ena occurring when a subcooled jet impinges a hot surface. We
want to test here the quality of the design of the corresponding
experiment, where embarked thermocouples yield a temperature
signal that has to be inverted using a pertinent heat transfer model
in this heated rotating cylinder. This paper corresponds to the
qualification of both the set-up, the model and the inversion proce-
dure, where all causes of noise and biases have to be taken into ac-
count. Further implementation of this indirect measurement
technique is currently under way, in order to characterize heat
transfer in the different boiling regimes (especially film and transi-
tion boiling) on this type of moving surface. Corresponding litera-
ture values [11,12] for the case of a moving cylinder end this
validation.

2. Direct heat transfer problem

The direct problem will be considered either as a one- or a two-
dimensional problem (noted 1D and 2D, respectively), and in each
case the linear (L) and non-linear (NL) approaches will be treated.
Thus, for a better clarity and conciseness, the different cases that
will be considered will be referred as Cx according to Table 1.
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Nomenclature

a thermal diffusivity ðm2 s�1Þ
c specific heat ðJ kg�1 K�1Þ
h heat transfer coefficient ðW m�2 K�1Þ
l length of the cylinder (m)
Nfts number of future time steps
NH number of harmonics
NTC number of thermocouples
p Laplace parameter (s�1)
P heating power (W)
r radius (m)
t time (s)
Te; T

SS ambient, initial temperature (�C)
Xn sensitivity matrix
Xi;kþ1 sensitivity coefficients (m2 K W�1)
Y vector of measured temperatures
Zn transfer function (m)

Greek symbols
c polar angle (rad)

k thermal conductivity (W m�1 K�1)
q density (kg m�3)
r noise standard deviation (�C)
u heat flux (W m�2)
x angular velocity (rad s�1)

Subscripts
k relative to the kth time interval Dt
m relative to thermocouple m
n relative to harmonic n

Superscripts
— Laplace transforme Fourier transformb estimated value
t transpose of a matrix

Table 1
Notations for considered cases

L NL

1D C1L �
2D C2L C2NL
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Moreover, when noise will be added to the generated data, the
notation Cxr will be employed. If no noise is added, the case will be
noted Cx0.

2.1. Two-dimensional linear modelling

In the direct problem, the exact temperature T at a point M in-
side a full rotating cylinder – composed of two layers of radii r1 and
r2 – is sought as a function of polar coordinates (r,c) as shown in
Fig. 1. A uniform surface heat source dissipates a power P(W) at ra-
dius r1 and a heat flux density u2, which varies with angle c and
with time t, is set at the outer radius r2.

For each domain i (where subscript i designates temperature T
in the central layer (0 6 r < r1; i ¼ 1) and in the outer layer
(r1 < r 6 r2; i ¼ 2)) of the rotating homogeneous cylinder, assum-
Thermocouples
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r
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Cooling Flux

Electrical heating

Fig. 1. Model geometry.
ing constant thermophysical properties, the mathematical formu-
lation of the two-dimensional heat conduction problem can be
written in the laboratory coordinates system as

o2Ti

or2 þ
1
r

oTi

or
þ 1

r2

o2Ti

oc2 �
x
a

oTi

oc
¼ 1

a
oTi

ot
ð1Þ

where a is the thermal diffusivity of the material and x the angular
velocity.

The associated boundary and interface conditions are

Tiðr; cþ 2p; tÞ ¼ Tiðr; c; tÞ; Tiðr; c; t ¼ 0Þ ¼ TSSðr; cÞ
oT1
or ðr ¼ 0; c; tÞ ¼ 0; �k oT2

or ðr ¼ r2; c; tÞ ¼ u2ðc; tÞ
T1ðr ¼ r1; c; tÞ ¼ T2ðr ¼ r1; c; tÞ

P
2pr1 l� k oT1

or ðr ¼ r1; c; tÞ ¼ �k oT2
or ðr ¼ r1; c; tÞ

8>>>><>>>>: ð2Þ

where TSS is a steady-state temperature field that takes place in the
cylinder before the cooling flux u2 is set.

The linear direct problem that is considered can then be solved
by expressing temperature T in terms of function u2ðc; tÞ. The tran-
sient temperature Ttransient solution of system (1) and (2) can be
written as the sum of the solutions of three problems:

Ttransientðr; c; tÞ ¼ Trelaxðr; tÞ þ Tadiaðr; tÞ þ Tcoolðr; c; tÞ ð3Þ

In this equation, Trelax is the axisymmetrical 1D transient tempera-
ture field that results from the natural relaxation of the initial TSSðrÞ
field inside the cylinder that is now insulated (adiabatic boundary
at r ¼ r2) without internal heating (P ¼ 0). Tadia is the axisymmetri-
cal 1D transient temperature field produced by internal heating P at
radius r1 with an adiabatic boundary at r ¼ r2 and an initial zero
temperature condition.

These problems can be independently solved [10] and we will
consider here only the temperature field Tcool produced by the
external cooling flux u2 that is solution of Eq. (1) associated to
boundary conditions:

Tðr; cþ 2p; tÞ ¼ Tðr; c; tÞ ðperiodicity conditionsÞ
�k oT

or ðr ¼ r2; c; tÞ ¼ u2ðc; tÞ oT
or ðr ¼ 0; c; tÞ ¼ 0

Tðr; c; t ¼ 0Þ ¼ 0

8><>: ð4Þ

The semi-analytical solution, [10], utilizes Laplace (parameter p)
and Fourier (harmonic number n) transforms, the temperature
being given in the Fourier domain by
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eT ðr; n; tÞ ¼ �1
k

Z t

0
½ eu2ðn; sÞ�½e�j n x ðt�sÞZnðt � sÞ�ds; ð5Þ

with

Znðr;pÞ ¼
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A Fourier inversion of Eq. (5) allows the calculation of the original
temperature Tðr; c; tÞ in the initial domain at any point in the
cylinder:

Tcoolðr; c; tÞ ¼
eT 0

2p
þ 1

p
X1
n¼1

½ReðeT nÞ cosðncÞ � ImðeT nÞ sinðncÞ� ð7Þ

where Re and Im are, respectively, the real and the imaginary part
of the Fourier transform.

In practice, this sum is truncated to a total number of harmonics
NH that depends on the space shape of the heat flux distribution
u2. For the inversion phase, this NH number is also limited by
the measurement noise and by the number of discrete measure-
ment points.

2.2. Direct simulation

Until now, no assumption has been made concerning the sur-
face heat flux; it only has to vary with time t and with angle c.
Thus, the temperature field can be calculated with any heat flux
imposed at radius r ¼ r2. However, the aim of the present study
is to propose an inverse algorithm allowing to estimate heat fluxes
extracted from the cylinder by the impact of a water jet: we conse-
quently choose a heat flux function that is related to the phenom-
enon of interest, i.e., water jet cooling.

Thus, the analytical direct model is tested for a given heat flux
imposed at radius r ¼ r2 in the fixed coordinates system that has
a time exponential decay (characteristic time tc) and a Gaussian
shape in c (simulating the decrease of cooling efficiency when
moving away from the center of the jet)

u2ðc; tÞ ¼ Kte�
1
2

c�p
rcð Þ

2

e�t=tc þ P
2pr2l

ð8Þ

The P
2pr2 l term in Eq. (8) allows to recover the steady-state asymp-

totic solution (t !1). The characteristic time tc allows to impose
the cooling rate. For physical reasons, cooling rates will be higher
for null or low values of angular velocity x (hence a small value
for tc) than for large values of x (high values of tc).

Except where otherwise specified, the parameters used for the
simulations are given in Table 2.

Temperature measurements are made through NTC ¼ 24 ther-
mocouples that are embedded in the moving cylinder at radius
r ¼ rTC. At time t ¼ 0, when the jet impinges the cylinder, the ther-
mocouple number i (i ¼ 1 to NTC) is at angle cið0Þ. At a later time, its
angle ciðtÞ is given by

ciðtÞ ¼ cið0Þ þxt ð9Þ

The observed temperature for a thermocouple i, Tcool
i ðtÞ ¼

TcoolðrTC; ciðtÞ; tÞ, see Eq. (7), is calculated through a numerical quad-
Table 2
Parameters used

Parameter Value

k 90:7 W m�1 K�1

qc 3 919 520 J m�3 K�1

r1, r2, l 0.049 m, 0.0875 m, 0.2 m
P, Kt 6000 W, 106 W m�2

x, rc 6 rad s�1, 0.465 rad
rature (trapezoidal rule for Eq. (5)) with a Dt ¼ 0:1 s time step for
the plot.

Excitation u2ðciðtÞ; tÞ, given by Eq. (8), as well as the tempera-
ture response obtained by the analytical solution (7) for a radius
rTC ¼ r2, are plotted in Fig. 2 in the moving coordinates system re-
lated to the cylinder for a point located at angle cið0Þ ¼ p at t ¼ 0.
The total number of harmonics used for the truncation of Eq. (7) is
NH ¼ 12.

2.3. Effect of thermal-dependency of thermophysical properties

It can be noted that Nickel conductivity and volumetric heat
vary significantly with temperature (about 25 percent between
50 �C and 600 �C for the conductivity).

Thus, as the analytical solution has been obtained for the linear
case, the choice of taking average values for conductivity k and qc
product should have a non-negligible impact on the solution.

The finite elements solver FlexPDE� allows the use of tempera-
ture dependent properties for calculation of the temperature field
inside the cylinder. This field is solution of the non-linear version
of the heat equation (Eq. (1))

1
r

o

or
kðTÞr oTi

or

� �
þ 1

r2

o

oc
kðTÞ oTi

oc

� �
� qcðTÞ x oTi

oc
¼ q cðTÞ oTi

ot

ð10Þ

with its associated conditions (2). It is possible to plot in Fig. 3a the
temperature variations obtained both for constant: k ¼ 53:55 W/
m K and qc ¼ 4:7� 106 J=m3K, and temperature variable properties
obtained by polynomial regression:

kðTÞ ¼ 4:98 10�5 T2 � 5:95 10�2 T þ 65:17132

q cðTÞ ¼ �4:68 10�9 T6 þ 8:31 10�6 T5 � 5:29 10�3 T4

þ1:41 T3 � 1:38 102 T2 þ 5:22 103 T þ 4:03 106

8><>:
ð11Þ

When compared, we see that the two assumptions for thermophys-
ical properties lead to the same qualitative results, with a gap be-
tween variations of temperatures increasing with time t (about
2 �C at time t = 6 s). Nevertheless, simulations of inversion shown
further down demonstrate that the influence of this non-linear ef-
fect on the estimated flux is not very large because the use of a
1D model allows to compensate this error.

3. 1D linear reduced model

A reduced local analytical 1D model simulating the same direct
problem (see Section 2) can be proposed with the aim of simplify-
ing the inversion procedure.

Using the classical Laplace transformation of temperature T:

Tðr; pÞ ¼
Z 1

0
Tðr; tÞ e�pt dt

and considering an initial temperature equal to 0 and a uniform flux
u2ðtÞ, the 1D analytical solution for temperature T is in the time
domain

Tðr; tÞ ¼ �1
k

Z t

0
½u2ðsÞ�½Z0ðr; t � sÞ�ds ð12Þ
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This model consists in truncating Fourier inversion (8), taking only
the n ¼ 0 harmonics, assuming no c dependency for the solution
(wall heat flux density normal to the wall).

The temporal inversion of Eq. (13) is made using Stehfest’s
numerical algorithm [13,14]:

Z0ðr; tÞ ¼
ln2

t

XN

j¼1

Vj Z0 r;p ¼ j ln2
t

� �
with N ¼ 10 in our case

ð14Þ

Moreover, since Z0ðr; t � sÞ ! 1 when t ! s, an asymptotic behav-
ior �Z0ðr; t � sÞ is used for Z0ðr; t � sÞ for time values lower than
tlim ¼ ilimDt (ilim ¼ 1 in our case), hence

Tðr; tÞ ¼ �1
k

Z t�tlim

0
u2ðsÞ Z0ðr; t � sÞdsþ

Z t

t�tlim

u2ðsÞ �Z0ðr; t � sÞds

" #
ð15Þ

with

�Z0ðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p t
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r

r
e�
ðr2�rÞ2

4at þ 1
2
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r r2
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2

ffiffiffiffiffiffiffi
a t
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ð16Þ

The 1D temperature response Tðr; tÞ ¼ Tðr; cðtÞ; tÞ (given by Eq. (12))
to the excitation u2ðtÞ ¼ u2ðcðtÞ; tÞ (given by Eq. (8)) is plotted in
Fig. 3b for a point located at angle cðtÞ with c ¼ p at time t ¼ 0.

In this local use of Eq. (12), u2 is the flux variation at the same
angle as the rotating point whose temperature is calculated.

In Fig. 3b, the temperature response calculated with the 2D ana-
lytical model (Eq. (7)) is also plotted. We see that the two models
are nearly equivalent. Use of a linear 1D model produces a bias in
the temperature output when compared to the corresponding out-
put of a more detailed linear 2D model (and hence a bias in the
estimated wall heat flux when the temperature measurements
are inverted using this simpler model). However, a bias also exists
when the output of the linear 2D model is compared to the re-
sponse of a non-linear (thermophysical properties of the cylinder
material depending on temperature) 2D model. We show here that
there is a bias compensation when both effects are taken into ac-
count: for the very specific material we use (Nickel), the output
of the linear 1D model is closer to the output of the non-linear
2D model than the output of the linear 2D model. This positive
effect justifies the use of the linear 1D model (whose inversion is
significantly less time consuming) for inverting the measurements.
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4. Inverse problem

In the inverse problem, the condition relative to flux u2 (which
is now unknown) is replaced by a measured temperature condi-
tion, the transient measurements being made by NTC ¼ 24 temper-
ature sensors located at radii r ¼ rTC. All other quantities appearing
in the formulation of the physical problem (thermophysical prop-
erties, . . .) are assumed to be exactly known, but the measurements
may contain random errors.

4.1. Inversion algorithm

In practice, the problem is solved in the particular case where
u2ðc; tÞ is a piecewise constant function of time t:

u2ðc; tÞ ¼ u2;kðcÞ for tk 6 t 6 tkþ1 ð17Þ

with tk ¼ kDt and k P 0, where Dt is both a discretization time step
for u2 and a calculation time step for temperature T.

It yields for ti ¼ i Dt (i P 2) and with t0 ¼ 0:

Tðr; c; tiÞ ¼ �
1
k

Xi�2

k¼0

u2;k

Z tkþ1

tk

Z0ðr; ti � sÞds
"

þ u2;ði�1Þ

Z ti

ti�tlim

�Z0ðr; ti � sÞds
#

ð18Þ

Temperature Tðr; c; tiÞ is thus a linear combination of the u2;k’s:

Tðr; c; tiÞ ¼
Xi�1

k¼0

Xi;kþ1 u2;k ð19Þ

where the coefficients Xi;kþ1 are:

Xi;kþ1 ¼ �
1
k

Z tkþ1

tk

L�1
I0

ffiffi
p
a

q
r

� �
ffiffi
p
a

q
I1

ffiffi
p
a

q
r2

� �
264

375
ti�s

ds if k < i� ilim ð20Þ

and

Xi;kþ1 ¼ �
1
k

Z tkþ1

tk

�Z0ðr; ti � sÞds if k P i� ilim ð21Þ

This yields in a matrix form

T ¼

Tðr; t1Þ
..
.

Tðr; tiÞ

0BB@
1CCA ¼

X11 . . . 0

..

. . .
. ..

.

Xi1 . . . Xii

0BB@
1CCA

u2;0

..

.

u2;i�1

0BB@
1CCA ¼ X u2 ð22Þ

where matrix X is the sensitivity matrix, which defines the relation-
ship between a change in the surface heat flux and the correspond-
ing change in the computed temperature response.

If TðrTC; cmðtÞ; tÞ is the vector of exact temperatures measured by
the mth thermocouple, Eq. (22) can be solved to find vector u2.
Actually, experimental measurements always present some uncer-
tainty, and the above method is no longer valid. We call
YðrTC; cmðtÞ; tÞ the value of TðtÞ measured at radius rTC and angle
cmðtÞ. Assuming an additive random error, we have

Ymðti;u2Þ ¼ Tmðti;u2Þ þ �mi ð23Þ

where �mi (m ¼ 1 to NTC, i ¼ 1 to if ) is an uncorrelated, zero mean
and identically distributed normal noise of constant standard devi-
ation r.

To take this noise into account, it is possible to use an Ordinary
Least Squares (OLS) method [15] which consists in minimizing the
sum S of the square errors between computed and measured
values

Sm ¼ ðYm � X u2Þ
tðYm � X u2Þ ð24Þ
with respect to the unknown heat flux vector u2. Solving for vector
u2 gives

bu2 ¼ ðXtXÞ�1 Xt Ym ð25Þ

However, the inverse problem can be inherently ill-posed, which
means that experimental errors may have a strong impact on the
solution. Indeed, this ill-posedness results in high sensitivity to data
errors due to the poor conditioning of the XtX matrix. In this case, a
regularization consisting in modifying least-square problem (24)
will be required.

4.2. Regularization technique

In our case, the temporal regularization is afforded by Beck’s fu-
ture time steps method [1]. This method consists in seeking only a
single heat flux component u2;M�1, corresponding not only to the
‘‘current” temperature measurement time t ¼ MDt, but also to
the measured data from several future times steps Nfts. With the
extra data, the problem is overdetermined and no additional un-
knowns are introduced: Beck’s prescription is then to choose the
unknown value of the heat flux component u2;M�1 so that the
sum of the squares of the errors is minimized. Thus, at each time
step tM , a single value of heat flux is estimated considering the
Nfts future times data points. However, the method requires to
know the heat flux variations on the Nfts future times, and usually
the temporary (and biased) assumption that uM�1 ¼ uM ¼
� � � ¼ uMþNfts�1 has to be made. After the flux component uM�1 is
estimated, the time index is advanced to tMþ1 and the next compo-
nent uM is estimated the same way.

Regularization in this sequential function specification method
is afforded by the number of future times Nfts considered. Of
course, this regularization introduces a bias, as the assumption
uM�1 ¼ uM ¼ � � � ¼ uMþNfts�1 is made, and in fact the heat flux func-
tion is biased toward a constant value: a good compromise has to
be made between stability and precision in the estimation.

Thus, a point of very practical importance is the selection of
proper value for the regularization parameter Nfts: its level must
be adjusted as a function of the noise in the data. In this work,
we have chosen to minimize the following norm based on the esti-
mated and exact heat flux densities:

eu2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn

i¼1

ðu2 � û2Þ2
vuut ð26Þ

Another approach would have been to invoke the ‘‘discrepancy
principle”, whose idea is to select Nfts as small as possible and such
that the temperature residual

RT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn

i¼1

ðY � Xû2Þ2
vuut ð27Þ

is consistent with the measurement error in the data, which means
of the same order of magnitude. This recommendation, made by
Tikhonov et Arsenine [16], will be verified during our simulations.

4.3. Inversions from simulated measurements

In order to test the inverse algorithm, we implement it on sim-
ulated measurements. These simulated measurements (or syn-
thetic data) come from the temperature distribution Tðr; cðtÞ; tÞ,
the output of the direct model (see Eq. (7)), which is modified by
a random Gaussian additive noise �, of standard deviation r,
according to Eq. (23). The output û2 of the analytical inverse algo-
rithm is an estimate of the heat flux u2, the input of the direct
model. It should be noted that only a linear one-dimensional
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(noted C01L) has been considered. Thus, in our simulations, the case
noted C2NLr=C01L will mean that the synthetic data have been ob-
tained using a 2D non-linear direct solution perturbated by a noise
of standard deviation r, and that the inversion has been made
using a 1D linear inverse algorithm. A flowchart of the inversion
algorithm is proposed (in Fig. 4).

4.3.1. Case of a noiseless signal (r ¼ 0)
Here, the idea is to quantify the impact of the 1D linear approx-

imation (15) on the inversion. To do so, the analytical 1D inverse
algorithm is applied on the 2D linear temperature response (7) to
the Gaussian excitation (given by Eq. (8)) (case C2L0=C01L with our
notations). The result is presented in Fig. 5, with a time step
Dt ¼ 10�2 s.

A good agreement appears between the two curves, the mean
square error being only a few percent. This can be explained by
the fact that the rotation of the cylinder has a tendency to make
temperature uniform in the angular direction. This temperature
field is sketched in Figs. 6 and 7 inside the rotating cylinder at time
t = 5 s, for the excitation of the cylinder by the Gaussian heat flux
for different values of angular velocity x and radius r. We can
see that in the case of a static cylinder (Fig. 6), heat transfer is
mainly two-dimensional as a temperature difference builds up be-
tween points located at different angular positions; this effect is
less apparent for deeper radii. On the contrary, the inner tempera-
ture distributions flatten for non-zero angular velocity (Fig. 7),
which means that the faster the cylinder is rotating, the more
localized in a thin layer at the periphery of the cylinder heat trans-
fer is: the one-dimensional assumption becomes more justified in
this rotating case.

4.3.2. Case of a noise with a standard deviation r–0
When applied to noised temperatures, we see in Fig. 8 that the

inverse method seems to be reliable for agreement between û2
Fig. 4. Inversion
and u2 is quite good (case C2L r=C01L). In the absence of regulariza-
tion (Nfts ¼ 0), a noise of standard deviation r = 0.5 �C leads to
important oscillations of û2. In the case of non-zero values for
Nfts (5 and 15), for the same noise level, the inverse model yields
the general shape of the direct flux u2, agreement between û2

and u2 becoming quite good in the first case. Indeed, if the value
of Nfts is too high (e.g. Nfts ¼ 15), the effect of the determinist bias
(introduced by the assumption uM�1 ¼ uM ¼ � � � ¼ uMþNfts�1) be-
comes apparent. The estimated heat flux variations are quenched
algorithm.
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and the rise in the heat flux occurs earlier in time, owing to the
anticipation of the temperature response associated with the use
of future time information (see Fig. 9).

Other simulations have shown that neglecting the two-dimen-
sional effects tends, as one could expect it, to overestimate the heat
flux, especially in the static case (x ¼ 0).

4.4. Estimation error

Any inverse algorithm can produce an estimate of the desired
function. It is then of primary importance to quantify the estima-
tion error in order to quantify the accuracy of the inversion. In
our case, the error can be divided into several components:

–the error linked to measurements errors (whose influence can
be decreased thanks to regularization);

–the error due to the different quadratures used for calculation
of Laplace transforms (

P
instead of

R
), error that is negligible

when the integration time step Dt becomes small enough;
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Fig. 7. Inner temperature profiles at time t = 5 s for x ¼ 2 rad=s (left) and x ¼ 6 rad=
–the error due to the uncertainties on the parameters supposed
to be known: temperature sensors positions and thermophys-
ical properties.

4.4.1. Sensitivity to temperature error and choice of parameter Nfts

As explained before, a point of very practical importance is the
selection of proper value for the regularization parameter Nfts. To
assess this value, variations of norms eu2

and RT with parameter
Nfts are plotted in Fig. 10 for a noise � having a standard deviation
r = 0.5 �C, and an inversion time step Dt ¼ 10�2 s.

We see that the adjusted value of Nfts that minimized eu2
is

Nfts ¼ 4. It should be noted that for this value of Nfts, the tempera-
ture residual RT is very close to the measurement error, as recom-
mended by Tikhonov et Arsenine [16].

Lastly, simulated measurements without any noise were used
as an input of the inverse algorithm for this adjusted value of
parameter Nfts. The estimated heat flux û2 was very close to the
initial angular position (rad)
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s (right), for r = 0.0871 m (——–), r = 0.0831 m (––––) and r = 0.0791 m (– �– �–).
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original one, which shows that the determinist bias (introduced by
the regularization) is very small.

4.4.2. Error on the probes’ locations
In practice, as temperature measurements are made inside the

body under investigation, it is useful to study the sensitivity coef-
ficient Xij of temperature Ti (at time ti) to the surface heat flux den-
sities uj (j 6 i). This coefficient, defined as

Xij ¼
oTi

ouj
ð28Þ

does not depend on the heat flux boundary condition due to the lin-
earity of the problem. It only depends on the temporal difference
ti � tj (a characteristic of convolution problems). As shown in
Fig. 11, where Xij is plotted for different values of the measurement
depth, the radial position has an influence on the sensitivity of tem-
perature to the surface heat flux: the deepest the measurement is
made, the less the sensitivity and the more difficult the estimation
is. This influence is amplified when noised temperatures are used.
As a consequence, in this part we will study the error due to the
uncertainties on the temperature sensors locations by taking into
account the temperature noise. We will consider the worst case cor-
responding to a thermocouple located deeper in the cylinder than it
is supposed to be (rTC < rnominal).

The inversion procedure is as follow:

� The temperatures ‘‘seen” by a thermocouple located at angle
c ¼ p

2 at time t ¼ 0 are calculated for radii rTC ¼ rnominal and
rTC ¼ 99:54% rnominal, which corresponds to depths of 0.4 and
of 0.8 mm, respectively.

� The calculated temperature fields are noised by an additive
noise of standard deviation r = 0.5 �C.
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� These ‘‘experimental” data are used for the inversion using a
unique radius equal to rnominal (i.e. 0.4 mm).

� By comparing the estimated and exact fluxes (see Fig. 11a) and
calculating the mean square errors, it is possible to quantify the
estimation error linked to the uncertainties on the probes’ loca-
tions. This simulation corresponds to case C1Lr=C01L.

It is interesting to notice in Fig. 11a that the two assumptions
for the measurement radius lead to nearly the same profile, even
if the heat flux is underestimated when the measurement radius
rTC is lower than the nominal radius rnominal because temperature
gradients are damped (typical of heat conduction). Besides, the
mean square error eu2

is 0:31� 105 W m�2 when measurement is
made at rTC ¼ rnominal (which corresponds to a depth of 0.4 mm),
and 0:57� 105 W m�2 when rTC < rnominal (depth of 0.8 mm).

4.4.3. Error due to the constant thermophysical properties assumption
As explained before, the problem has been analytically solved

considering constant thermophysical properties. It appeared in
Section 2.3 that this assumption had an influence on the calculated
temperatures, influence that should also appear during the estima-
tion process.

In order to quantify this influence, we applied the 1D linear in-
verse algorithm on synthetic temperatures calculated by the Flex-
PDE� solver using temperature dependent properties (case
C2NL0=C01L). The comparison between direct and estimated heat
fluxes is shown in Fig. 11b.

We see a good agreement between the two curves, the mean
square errors eu2

being about 0:3� 105 W=m2: thus, the error
due to the use of a 1D linear inverse algorithm (applied to the re-
sponse of a 2D non-linear direct model) is of 6% only.

5. Examples of an experimental inversion

The experimental validation of the inversion method has been
done on a set of experiments [17,18]. Thus, a complete descrip-
tion of the experimental set-up can be found in the previous
papers.
Fig. 12. Experimental s
5.1. Experimental set-up

The main characteristics of the set-up used for the experiments
[11,12] are given here. A rotating cylindrical of 200 mm length,
49 mm inside radius and 87.5 mm outside radius is instrumented
with 24 thermocouples of 0.5 mm diameter, used to measure local
transient temperature near the surface. They are embedded paral-
lel to the cylinder axis. Their junctions are located in the transverse
plane of symmetry of the cylinder. The nominal radius of implan-
tation is rTC ¼ 86:5 mm.

A uniform and time-constant surface heat source P(W) is dissi-
pated through three electrical wires inserted into grooves ma-
chined in the internal surface of the external cylinder, in order to
reach the desired initial surface temperature.

The measurement cylinder, see Fig. 12, is submitted to the
impingement of a subcooled water jet whose temperature and
velocity were known. The nozzle/surface distance was also known,
and it consisted in another parameter which could influence the
cooling rates.

5.2. Experimental procedure

The experimental procedure is as follow: when the surface tem-
perature had reached the desired value, the heating of the cylinder
is stopped and the jet cooling starts simultaneously while the tran-
sient temperatures were measured by the thermocouples. Mea-
surements are made for different jet velocities, jet temperatures,
initial surface temperatures and for different cylinder’s angular
velocities.

The temperature measurements are used as the input of the 1D
inverse algorithm in order to estimate the heat flux extracted by
the impact of the subcooled water jet. In fact, since in our inverse
conduction problem we are only interested in the estimation of the
wall heat flux, we have inverted the cooling component T ¼ Tcool

only. Thus, in our experiments, TSSðrÞwas measured by the rotating
thermocouples prior to jet impingement, which allowed to calcu-
late Trelaxðr; tÞ with Tadiaðr; tÞ ¼ 0 (no heating during jet cooling) at
the same locations to get the experimental Tcool response by
et-up from [11,12].
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substraction from the experimental signal. As the problem is linear,
the correction due to the natural relaxation of the temperature
Trelaxðr; tÞ when the internal heating has been stopped (i.e. before
the jet cooling) can be calculated independently of each experi-
ment. The heat flux correction will depend only on the internal
heating power but these are independent of the initial external
wall temperature. Fig. 13 shows the heat flux corrections for differ-
ent internal heating power. These flux corrections are negative and
produce hence an increase of the cooling flux. It shows that the
correction is quite high at the very beginning of the experiment
and becomes negligible for longer times.

In a later step, once the heat flux estimated, the wall tempera-
ture can be reconstructed by application of the direct problem (3)
and (14) in order to plot boiling curves for example.

The advantage of the method lies in the fact that it is non-intru-
sive which allows to quantify the effect of different parameters on
the cooling rates and on the boiling phenomena that can occur at
the surface of the cylinder.
5.3. Experimental inversion results for a rotating cylinder case

Fig. 14 shows the experimental temperature measured dur-
ing impingement of the rotating cylinder (x ¼ 15 rad=s) by a
water jet of temperature Tj ¼ 66 �C and jet velocity
Vj ¼ 1:06 m=s, for heating power P ¼ 2000 W. The surface veloc-
ity is equal to VS ¼ 1:32 m=s and thus the surface to jet velocity
ratio r� is 1.25 with a 50 mm nozzle to cylinder distance. A
zoom between times t ¼ 225 s and t ¼ 230 s shows that the ob-
served oscillations are due to the rotation of the cylinder, the
curve being composed of an increasing and a decreasing phase.
The decreasing phase corresponds to jet cooling and the
increasing phase to re-heating of the surface when the thermo-
couple has left the zone of influence of the jet. Fig. 15 shows
the resulting absolute values of the estimated wall heat flux
variations with time.

The zones of existence of different boiling regimes are indicated
in these figures: (1) film boiling, (2) transition boiling, (3) nucleate
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boiling and (4) forced convection. The limits between zones can be
determined by plotting the estimated boiling curves ( bu2 versus
DTsat) in the laboratory coordinates system: minimum heat flux
for film/transition, maximum heat flux for transition/nucleate,
and angular point for nucleate/forced convection.

The maximum heat flux – corresponding to the critical heat flux
– is of the order of 3:5 MW=m2 (see Fig. 15).

6. Conclusion

A two-dimensional linear analytical solution has been used for
calculation of the transient temperature response of a finite-length
rotating heated cylinder submitted to a known but time-depen-
dent and not uniform cooling heat flux at its outer surface. This
solution, based on Laplace and Fourier transforms, is obtained by
solving the heat equation and is explicitly given using series
expansions and modified Bessel functions. The variations of ther-
mophysical properties of Nickel with temperature have been taken
into account. It has been shown that the linear model can be used
for transient simulations with low error. A further simplification of
the model, that consists in making it locally 1D, has been achieved
and justified.

Then, simulations with or without additive noise have shown
that an estimation technique with time regularization applied to
experimental temperatures allows to recover the surface heat flux
with good accuracy. Some kind of time regularization, here Beck’s
future time steps methods, is compulsory because temperature
measurements are made inside the body rather than at the bound-
ary (hence a great sensitivity to measurement errors). The limita-
tion of the method (and of any inversion method) is the usual
trade-off that has to be made between a stable solution starting
from noised measurements and the estimation bias (caused by a
too large regularization). Other causes of estimation bias have been
studied: error in the precise location of the sensors, temperature
dependency of thermophysical properties, and inversion by a re-
duced linear 1D model.

The interest of using a 1D analytical method lies in the mini-
mum number of hyperparameters that are used (one here: the
number of future times Nfts): no space grid nor meshing is neces-
sary, with its associated effect on the error in the estimated flux.
Moreover, the time needed for calculation is quantitatively re-
duced when the analytical approach is used. A specific limitation
of the analytical method is the necessity to have non-temperature
dependent thermophysical properties of the cylinder (linear esti-
mation problem), but the influence of this assumption on the
inversions can be quantified.

This indirect method of measurement allows to consider the
rotative cylinder as a non-intrusive fluxmeter: it has allowed to
plot local boiling curves, including the transition boiling regime,
without perturbing the phenomena of interest. The detailed use
of this technique for boiling characterization on a moving cylinder
is studied in [17,18].
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